Fagus 7 - Clases 10.12 - Tension debida al cortante

Hola,

yo è entendido que la fuerza longitudinal debida al cortante es 9 kN (porque l'incinacion es 45°). Esta fuerza es localizada en la armadura longitudinal que tiene una ecentricidad con respecto de el cientro de gravidad de la seccion. En la transformacio que Fagus hace por My, el tiene en cuenta que la fuerza de 80 kN es aplicada en el axis point. Porquè la ecentricidad de la fuerza longitudinal debida al cortante no se toma en cuenta en la trasformacion de My?

Muchas gracias,

Edoardo

Edoardo Po
únete a la conversación 👇
José Manuel Gómez Barranco

Estimado Edoardo.

El esfuerzo cortante en una viga se desarrolla siempre y cuando haya una variación de la ley de momentos flectores en la misma. Dicho de otra forma, la ley de esfuerzos cortantes está ligada a la ley de momentos flectores y no se entiende una sin la otra.

Por efecto del trabajo en celosía se modifican los axiles en la cabeza de la viga. Las armaduras longitudinales a flexión han de ser capaces de soportar un incremento de tracción respecto a la producida por Md, para ello se desplaza la ley de flectores un canto útil d hacia la parte más desfavorable, así se tiene en cuenta el efecto de la fisuración oblicua por cortante (el valor d está del lado de la seguridad).
imagen

imagen

La estructura interna en forma de celosía que se genera a partir de las bielas comprimidas y de los tirantes que conforman las armaduras de cortante (cercos verticales) y las armaduras longitudinales será a la que equilibre todas las fuerzas que en ella intervengan.

imagen

Teniendo en cuenta lo anterior vamos a explicar como realiza FAGUS la transformación de los esfuerzos centrándonos en el cortante, ya que es el tema del que trata tu pregunta.

En el ejemplo presentado en el vídeo del curso tenemos una sección rectangular que, como es lógico, es una sección simétrica en los dos ejes. La transformación de los esfuerzos teniendo en cuenta el cortante dependerá fundamentalmente de dos cosas:

a)- de la geometría de la sección.

En el ejemplo, al tener una sección rectangular tendremos el cdg situado justo a la mitad del canto de la misma. Además nuestra pared de cortante que resiste el cortante vertical Vz tiene una altura igual a dicho canto, lo que hace que el centro de cortante de esa pared coincida con el cdg de la sección. El resultado de la transformación es un cortante igual al introducido y un axil en el punto del que hablamos sin excentricidad con respecto al cdg de la sección y, en consecuencia, sin generar momento.

Todo esto es diferente si en lugar de una sección simétrica respecto a un eje horizontal que pase por el cdg tenemos una asimétrica con respecto a dicho eje. En ese caso existe una distancia entre el cdg de la sección y el centro de cortantes de la pared de cortante. Tomemos la siguiente sección:

imagen

Tenemos que el cdg de la sección se sitúa a 0.80 m de la base de la misma.

imagen

En esta sección podemos definir las siguientes paredes de cortante:

imagen

Si nos fijamos en la pared de cortante vertical, que tiene una altura comprendida entre la linea media de cada una de las alas e igual a 1.1 m, tendríamos que su centro de cortante estaría en el punto medio, es decir, a 0.55 m de cualquiera de sus extremos. Esto supondría que habría una excentricidad con respecto al cdg de la sección de 0.15 m.

Si introducimos un cortante de 10 kN y consideramos una inclinación de las bielas de comprimidas de 45º cabría esperar la aparición e un axil de 10 kN situado en dicho centro de la pared de cortante vertical (mismo valor que el cortante por esos 45º)

imagen

Este axil de 10 kN multiplicado por la excentricidad hasta el cdg de la sección resulta un momento de 10*0.15 = 1.5 kNm.

Si miramos la transformación de los esfuerzos que hace FAGUS:

imagen

Observamos ese incremento en el My.

Esto se explica en el siguiente apartado del manual de FAGUS:

imagen

b)- del modelo V-T seleccionado

Para que lo descrito en el apartado a) ocurra es muy importante elegir el modelo V-T de forma correcta. En este punto nos gustaría recomendarte la lectura de nuestro artículo que trata este tema y que está disponible en nuestro Help Center y al que puedes acceder a través del siguiente enlace:

["¿Cómo elegir el tipo de modelo cortante-torsor (V-T) que mejor se adapta al caso de estudio?" ]https://cubus-software.zendesk.com/hc/es/articles/115007361927)

Como verás, en este caso el modelo ideal a elegir será el Tipo A, ya que en secciones como esta el programa decidirá que pared resistirá el esfuerzo cortante introducido en función de la geometría. El modelo Tipo B también sería válido pero seremos nosotros los que debamos especificar que pared trabaja para cada esfuerzo.

El modelo automático hace que las paredes existentes en las alas se lleven algo del cortante vertical debido al circuito de cortante que introduce dentro de cada pared. Esa pequeña parte de cortante vertical no la muestra el programa y no podemos controlarla por lo que este tipo de modelo no es el más adecuado para estas secciones donde está claro que nunca interesará que las alas trabajen para un cortante Vz.

Esperamos haberte aclarado la duda.

Un saludo,

16 may 2018 - 12:12
Edoardo Po

Muchas gracias José,

ahora es claro quale es la ecentricidad de la tension debida al cortante con respecto al CDG de la seccion.

Cordialmente,

Edoardo

16 may 2018 - 20:10

¿Ya tienes cuenta? Haz login


Más de 3000 alumnos y 70 empresas han confiado en ingenio.xyz. Conoce quiénes son y por qué nos han elegido.

🚀 Suscríbete y accede a todo INGENIO.XYZ

Formación que te acompaña en tu desarrolo profesional. Una tarifa plana anual que te permite hacer cualquiera de nuestros Cursos y acceder a todas las Masterclasses de los expertos.

Incluye:

  • Todo el catálogo de cursos a tu disposición. Accede cada mes al curso que elijas.

  • Acceso al archivo completo de Masterclasses.

  • Acceso a tu historial de cursos completados para consulta y repaso futuro.

  • Renovación anual. Cancela cuando quieras.

Suscripción Anual

690€/año

(equivalente a 57,50€ al mes)